When parts you manufacture pass through numerous processes such as deep hole drilling, machining, hobbing and grinding, a CMM is essential when your customers require 100 percent in-process and final inspection.
With growing markets in aerospace and energy technologies, measuring hob cutters used in gear cutting is becoming an essential requirement for workpieces and machine tools. Zoller, a provider of solutions for tool pre-setters, measuring and inspection
machines and tool management software,
has developed a new partnership with Ingersoll/Germany for shop floor
checking of hob cutters by a combined
hardware and software approach.
In comparison with the traditional gear design approach based on preselected, typically standard generating rack
parameters, the Direct Gear Design method provides certain advantages for custom high-performance gear drives that
include: increased load capacity, efficiency and lifetime; reduced size, weight, noise, vibrations, cost, etc. However, manufacturing such directly designed gears requires not only custom tooling, but also customization of the gear measurement methodology. This paper presents definitions of main inspection dimensions and parameters for directly designed spur and helical,
external and internal gears with symmetric and asymmetric teeth.
It may not be widely recognized that most of the inspection data supplied by inspection equipment, following the
practices of AGMA Standard 2015 and similar standards, are not of elemental accuracy deviations but of some form of composite deviations. This paper demonstrates the validity of this “composite” label by first defining the nature of a true
elemental deviation and then, by referring to earlier literature, demonstrating how the common inspection practices for involute, lead (on helical gears), pitch, and, in some cases, total accumulated pitch, constitute composite measurements.
Gear metrology is a revolving door of software packages and system upgrades. It has to be in order to keep up with the productivity and development
processes of the machines on the
manufacturing floor. Temperature
compensation, faster inspection times
and improved software packages are
just a few of the advancements currently in play as companies prepare for new opportunities in areas like alternative energy, automotive and aerospace/defense.
In this paper, a method is presented for analyzing and documenting the pitting failure of spur and helical gears through digital photography and automatic computerized evaluation of the damaged tooth fl ank surface. The authors have developed an accurate,
cost-effective testing procedure that provides an alternative to vibration analysis or oil debris methods commonly used in conjunction with similar test-rig programs.
The two-flank roll test measures kickout (tooth-to-tooth composite error) and tooth thickness. In this article, it will be shown that measured values vary with the number of teeth on the master gear.