Gear manufacturers are moving into an era that will see changes in both engineering practices and industry
standards as new end-products evolve. Within the traditional automotive
industry, carbon emission reduction
legislation will drive the need for higher levels of efficiency and growth in electric and hybrid vehicles.
Meanwhile, the fast growing market of wind turbines is already opening up a whole new area of potential for gearbox manufacturers, but this industry is one that will demand reliability, high levels of engineering excellence and precision manufacturing.
Industrial gear standards have been used to support reliability through the specification of requirements for
design, manufacturing and verification.
The consensus development of an
international wind turbine gearbox
standard is an example where gear
products can be used in reliable
mechanical systems today. This has
been achieved through progressive
changes in gear technology, gear
design methods and the continual
development and refinement of gearbox
standards.
“The gear marketplace is a global marketplace.” Bill Bradley says it easily, with no special emphasis. The vice president of AGMA’s technical division sees the statement as an obvious fact.
As the international business community grows closer together, the
need for understanding differences between national and international
gear rating standards becomes increasingly important for U.S. gear
manufacturers competing in the world market.
AGMA has started to replace its 2000-A88 standard for gear accuracy with a new series of documents based largely on ISO standards. The first of the replacement AGMA standards have been published with the remainder coming in about a year. After serving as a default accuracy specification for U.S. commerce in gear products for several decades, the material in AGMA 2000-A88 is now considered outdated and in need of comprehensive revision.
This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.
One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.
ISO 6336 Calculation of Load Capacity of Spur and Helical Gears was published in 1997 after 50 years of effort by an international committee of experts whose work spanned three generations of gear technology development. It was a difficult compromise between the existing national standards to get a single standard published which will be the basis for future work. Many of the compromises added complication to the 1987 edition of DIN 3990, which was the basic document.
The American Gear Manufacturers Association (AGMA) is accredited by the American National Standards Institute (ANSI) to write all U.S. standards on gearing. However, in response to the growing interest in a global marketplace, AGMA became involved with the International Standards Organization (ISO) several years ago, first as an observer in the late 1970s and then as a participant, starting in the early 1980s. In 1993, AGMA became Secretariat (or administrator) for Technical Committee 60 of ISO, which administers ISO gear standards development.
The wind turbine industry has been plagued with gearbox failures, which cause repair costs, legal expenses, lost energy production and environmental pollution.