Who wants or needs technical details about gearing? Who cares about it? Three out of every four people who are reading this magazine make up at least 75% of those who have an interest in the subject. The members of AGMA, EUROTRANS, JGMA and JSIM have an interest. All the people attending the Gear Expo in Detroit have an interest. Clearly, however, the people with the most pressing interest in our industry are our customers, the end users of gear products. The unfortunate reality, though, is that in many cases, these customers don't even know that's what they want.
Standards are unlike gears themselves: mundane, but complex, ubiquitous and absolutely vital. Standards are a lingua franca, providing a common language with reference points for evaluating product reliability and performance for manufacturers and users. The standards development process provides a scientific forum for discussion of product design, materials and applications, which can lead to product improvement. Standards can also be a powerful marketing tool for either penetrating new markets or protecting established ones.
AGMA and members of the Metal Powder Industries Federation (MPIF) are three years into a joint project to develop specifications and an information sheet on rating powder metal gears. According to committee vice chairman Glen A. Moore of Burgess-Norton Mfg. Co., the first phase of the project, the publication of AGMA Standard "6009-AXX, Specifications for Powder Metallurgy Gears," should be completed in late 1996 or early 1997.
Today motion control systems are migrating from analog to digital technology at an ever increasing rate because digital technology at an ever-increasing rate because digital drives provide performance equal to or exceeding that of analog drives, plus information to run your machine more effectively and manage your quality program and your business. Most of this data is simply not available from analog drives.
Ready or not, QS-9000 is here. If you are a first-tier supplier to one of the Big Three automotive companies, you've already heard that compliance with this new quality standard is now an entry-level requirement for doing business with Ford, General Motors and Chrysler. If you're a second-or third-tier supplier, you can expect the ripple effect of this new standard to hit your company one way or another.
The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.
Much about ISO 9000 is the subject of noisy debate. But on one thing almost everyone, true believers and critics alike, agrees: Getting ISO 9000 certification can be expensive. Companies can expect to spend at least $35,000 for basic certification and six-month checkup fees over a three-year period. These figures do not include hidden costs like time and money spent on internal improvements required to meet ISO 9000 certification. But the really big-ticket items in the process are employee time and the cost of bringing in outside consultants. Many ISO 9000 consultants charge upwards of $1,800 a day.
On of the key questions confronting any company considering ISO 9000 certification is, how much is this going to cost? The up-front fees are only the beginning. Dissect the ISO 9000 certification procedure with an eye for hidden costs, and two segments of the process will leap out - the cost of consultants and the cost of making in-house improvements for the sake of passing certification. Most of these costs can be controlled by careful selection f the right consultant in the first place.
I noted with interest the beginning of Gear Technology's three-part series on ISO 9000 certification. I also recently attended Brown & Sharpe's/Leitz gear metrology seminar. Both events caused me to smile and reflect.
What follows is the first of three articles we will be running on ISO 9000 and what it means for the gear industry. This first article will cover what ISO 9000 is, what some of its benefits - and problems - are, and whether your company should be a candidate for this certification process. In our next issue, we will consider the important question of how, when, and if to hire an ISO 9000 consultant. The final article in this series will discuss ways to save money while streamlining the certification process in your company.