Hard Gear Finishing (HGF), a relatively new technology, represents an advance in gear process engineering. The use of Computer Numerical Controlled (CNC) equipment ensures a high precision synchronous relationship between the tool spindle and the work spindle as well as other motions, thereby eliminating the need for gear trains. A hard gear finishing machine eliminates problems encountered in two conventional methods - gear shaving, which cannot completely correct gear errors in gear teeth, and gear rolling, which lacks the ability to remove stock and also drives the workpiece without a geared relationship to the master rolling gear. Such a machine provides greater accuracy, reducing the need for conventional gear crowning, which results in gears of greater face width than necessary.
The higher load carrying capacities, compact dimensions and longer life of hardened gears is an accepted fact in industry today. However, the costs involved in case hardening and subsequent finishing operations to achieve these advantages are considerable. For example, in order to achieve desired running properties on larger gears, it has been necessary to grind the tooth flanks. This costly operation can now be replaced, in many cases, by a new Hard Cutting (HC)
process which permits the cutting of hardened gears while maintaining extremely low tooling costs.
In conventional gear grinders, grinding wheels with Alundum grains and a hardness of about 2000 HV have been used for finishing steel gears with hardnesses up to about 1000HV. In this case, the accuracy of the gears ground is greatly affected by wear of the grinding wheel because the difference in hardness is comparatively small when the gears are fully hardened.
Until recently, form gear grinding was conducted almost exclusively with dressable, conventional abrasive grinding wheels. In recent years, preformed, plated Cubic Boron Nitride (CBN) wheels have been introduced to this operation and a considerable amount of literature has been published that claim that conventional grinding
wheels will be completely replaced in the future. The superior machining properties of the CBN wheel are not disputed in this paper.
Borazon is a superabrasive material originally developed by General Electric in 1969. It is a high performance material for machining of high alloy ferrous and super alloy materials. Borazon CBN - Cubic Born Nitride - is manufactured with a high temperature, high pressure process similar to that utilized with man-made diamond. Borazon is, next to diamond, the hardest abrasive known; it is more than twice as hard as aluminum oxide. It has an extremely high thermal strength compared to diamond. It is also much less chemically reactive with
iron, cobalt or nickel alloys.