NC and CNC metal cutting machines are among the most popular machine tools in the business today, There is also a strong trend toward using flexible
machining centers and flexible manufacturing systems. The same trend is apparent in gear cutting. Currently the trend toward CNC tools has increased, and sophisticated controls and peripheral equipment for gear cutting machines are now available; however, the investment in a CNC gear machine has to be justified on the basis of economic facts as well as technical advantages.
The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.
Curvic Couplings were first introduced in 1942 to meet the need for permanent couplings and releasing couplings (clutches), requiring extreme accuracy and maximum load carrying capacity, together with a fast rate of production. The development of the Curvic Coupling stems directly from the manufacture of Zerol and spiral bevel gears since it is made on basically similar machines and also uses similar production methods. The Curvic Coupling can therefore lay claim to the same production advantages and high precision associated with bevel gears.
Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.
Below are listed a variety of commonly used constants arranged numerically to permit ease of reference. Wherever an asterisk (*) is shown, the constant is exact as given, it being generally a mathematical constant or one fixed by definition. In cases where the first constant listed is followed by another in parenthesis, the first is the round number generally used, while the second is the more exact value.
The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.
It has previously been demonstrated that one gear of an interchangeable series will rotate with another gear of the same series with proper tooth action. It is, therefore, evident that a tooth curve driven in unison with a mating blank, will "generate" in the latter the proper tooth curve to mesh with itself.
The following is a general overview of some of the different factors that lead to the specific design. and the selection of the correct tool for a given hobbing application.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index,
helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations
in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase
the gear's load carrying capacity, its factor of safety and its service life.
The proper design or selection of gear cutting tools requires thorough and detailed attention from the tool designer. In addition to experience, intuition and practical knowledge, a
good understanding of profile calculations is very important.