The purpose of this article is to discuss ISO 4156/ANSI B92.2M-1980 and to compare it with other, older standards still in use. In our experience designing and manufacturing spline gauges and other spline measuring or holding devices for splined component manufacturers throughout the world, we are constantly surprised that so many standards have been produced covering what is quite a small subject. Many of the standards are international standards; others are company standards, which are usually based on international standards. Almost all have similarities; that is, they all deal with splines that have involute flanks of 30 degrees, 37.5 degrees or 45 degrees pressure angle and are for the most part flank-fitting or occasionally major-diameter-fitting.
Engineering design requires many different types of gears and splines. Although these components are rather expensive, subject to direct wear, and difficult to replace, transmissions with gears and splines are required for two very simple reasons:
1) Motors have an unfavorable (disadvantageous) relation of torque to number of revolutions.
2)Power is usually required to be transmitted along a shaft.
Since the design of involute splines and
their manufacture requires considerable
knowledge, not only of the basic properties of the involute profile, but also of various other elements which affect the spline fit and the sometimes complex principles underlying manufacturing and checking equipment, the question is frequently raised as to why the involute profile is given preference in designing splines over the seemingly simpler straight sided tooth profile.
This article describes a new technique for the size determination of external Involute splines by using a span measuring method. It provides application performance information
demonstrating how this method and its
measurements correlate with the traditional spline ring gage sizing method.