Gearbox performance, reliability, total cost of ownership (energy cost), overall impact on the environment, and anticipation of additional future regulations are top-of-mind issues in the industry. Optimization of the bearing set can significantly improve gearbox performance.
In many gear transmissions, a tooth load on one flank is significantly higher and is applied for longer periods of time than for the opposite one; an asymmetric tooth shape reflects
this functional difference. This paper describes an approach that rationalizes the degree of asymmetry (or asymmetry factor K) selection to meet a variety of operating conditions and requirements for custom gear drives.
In this paper a new method for the introduction of optimal modifications into gear tooth surfaces - based on the
optimal corrections of the profile and diameter of the head cutter, and optimal variation of machine tool settings for pinion and gear finishing—is presented. The goal of these tooth modifications is the achievement of a more favorable
load distribution and reduced transmission error. The method is applied to face milled and face hobbed hypoid gears.
This paper presents a unique approach and methodology to define the limits of selection for gear parameters. The
area within those limits is called the “area of existence of involute gears” (Ref. 1). This paper presents the definition and construction of areas of existence of both external and internal gears. The isograms of the constant operating pressure
angles, contact ratios and the maximum mesh efficiency (minimum sliding) isograms, as well as the interference
isograms and other parameters are defined. An area of existence allows the location of gear pairs with certain characteristics. Its practical purpose is to define the gear pair parameters that satisfy specific performance requirements before
detailed design and calculations. An area of existence of gears with asymmetric teeth is also considered.
If a gear system is run continuously for long periods of time—or if the starting loads are very low and within the normal operating spectrum—the effect of the start-up conditions may often be insignificant in the determination of the life of the gear system. Conversely, if the starting load is significantly higher than any of the normal operating conditions,
and the gear system is started and stopped frequently, the start-up load may, depending on its magnitude and frequency, actually be the overriding, limiting design condition.
In this paper, an accurate FEM analysis has been done of the “true” stress at tooth root of spur gears in the function of the gear geometry. The obtained results confirm the importance of these differences.
The main theme of this article is high-capacity, high-speed load gears in a power transmission range between 35 MW and 100 MW for generators and turbo-compressors driven by gas or steam turbines.
LMS International helped a Fiat subsidiary develop a new, dynamic vibro-acoustic prediction method to reduce design time and engineering costs through accurate prediction of gear noise in the design phase.