Worm gear speed reducers give the design engineer considerable options, but these gear systems present a challenge to the lubrication engineer. Heat energy generated by the high rate of sliding and friction in the contact zone causes worm gears to be relatively inefficient compared to other gear types. Because worm gears operate under a boundary or near-boundary lubrication regime, a satisfactory lubricant should contain a friction modifier to alleviate these conditions.
Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.
Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.
The effect of various lubricant factors on wormgear efficiency has been evaluated using a variety of gear types and conditions. In particular, the significant efficiency improvements
afforded by certain types of synthetic
lubricants have been investigated to determine the cause of these improvements. This paper describes broad wormgear testing, both in the
laboratory and in service, and describes the extent to which efficiency can be affected by
changes in the lubricant; the effects of viscosity, viscosity index improvers and, finally, synthetic lubricants are discussed. The work concludes that lubricant tractional properties
can play a significant role in determining gear efficiency characteristics.
Worm gearing is of great antiquity, going back about 2100 years to Archimedes, who is generally acknowledged as its inventor.
Archimedes' concept used an Archimedial spiral to rotate a toothed wheel. Development of the worm gearing principle progressed along conventional lines until about 500 years ago when Leonardo DaVinci evolved the double enveloping gear concept.