This paper shows an experimental study on the fatigue lifetime of high-heat polyamide (Stanyl) gears running in oil at 140°C. Based on previous works (Refs. 1–2), an analysis is made correcting for tooth bending and calculating actual root stresses. A comparison with tensile bar fatigue data for the same materials at 140°C shows that a good correlation exists between gear fatigue data and tensile bar fatigue data. This insight provides a solid basis for gear
designers to design plastic gears using actual material data.
Plastic gears and transmissions require a different design approach than metal transmissions. Different tools are available to the plastic transmission designer for optimizing his geared product, and different requirements exist for inspection and testing.
This paper will present some of the new technology available to the plastic gear user, including design, mold construction, inspection, and testing of plastic gears and transmissions.
"We're taking over," says Art Milano. It's a bold statement from the engineering manager of Seitz Corporation, one of the largest manufacturers of injection molded plastic gears, but Milano has reason for his optimism. Plastic gears are big business-probably bigger than most gear industry "insiders" realize.
Hoechst Technical Polymers has expanded its interests in plastic gears with the introduction of the new Plastic Gear Evaluation and Research machine P-Gear. The machine is the centerpiece of the company's continuing efforts to promote and develop the use of plastic gears in higher-powered applications.
Plastic gears are serious alternatives to traditional metal gears in a wide variety of applications. The use of plastic gears has expanded from low-power, precision motion transmission into more demanding power transmission applications. As designers push the limits of acceptable plastic gear applications, more is learned about the behavior of plastics in gearing and how to take advantage of their unique characteristics.
The data discussed in this article was taken from an upright vacuum cleaner. This was a prototype cleaner that was self-propelled by a geared transmission. It was the first time that the manufacturer had used a geared transmission in this application.