This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.
Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.
Joe Arvin comments on his recent trip to Scandinavia and how U.S. defense dollars are being spent overseas. J.D. Smith responds to an article on gear noise from the previous issue.
Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher
rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.
Gear noise can be a source of intense annoyance. It is often the primary source of annoyance even when it is not the loudest noise component. This is because of the way it is perceived. Gear noise is a collection of pure tones which the human ear can detect even when they are 10dB lower than the overall noise level. Another reason for our sensitivity to transmission noise is that we associate it with impending mechanical failure.
As a result of extensive research into the vibration characteristics of gear drives, a systematic approach has evolved, by which damaging resonances can be eliminated. The method combines
finite element techniques with experimental signature and modal
analyses. Implementation of the bulk of the method can be carried out early in the design stage. A step-by-step description of the approach, as it was applied to an existing accessory drive, is given in the text. It is shown how
premature bearing failures were eliminated by detuning the torsional
oscillations of a gearshaft. A dramatic reduction in vibration levels was achieved as a result of detuning the problem gear. The proposed approach can be extended to other types of rotating machines.