Saint-Gobain Abrasives has introduced its new Norton Abrasive Process Solutions (APS) Program which was established to help customers determine the optimal grinding or finishing solution for the application at hand, ranging from simple to complex, off-hand or automated, and for metal fabrication, production grinding and virtually any abrasives operation.
Cubic Boron Nitride (cBN) abrasive wheels, which are a specially engineered abrasive grain referred to as a superabrasive, typically yield 2,200 - 2,500 parts per dress with one wheel lasting as long
as four to six months.
With increasingly smaller returns from improving the speed of the actual gear grinding process, improving your setup time has become a primary way to keep improving efficiency. Here's the latest on how you can do that today.
The grinding/abrasives market is rapidly changing, thanks to new technology, more flexibility and an attempt to lower customer costs. Productivity is at an all-time high in this market, and it’s only going to improve with further R&D. By the time IMTS 2014 rolls around this September, the gear market will have lots of new toys and gadgets to offer potential customers. If you haven’t upgraded any grinding/abrasives equipment in the last five years, now might be a good time to consider the investment.
Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order
to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded
wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.
In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.
Because of the better thermal conductivity of CBN abrasives compared to that of conventional aluminum oxide wheels, CBN grinding process, which induces residual compressive stresses into the component, and possibly improves the subsequent stress behavior. This thesis is the subject of much discussion. In particular, recent Japanese publications claim great advantages for the process with regard to an increased component load capacity, but do not provide further details regarding the technology, test procedures or components investigated. This situation needs clarification, and for the this reason the effect of the CBN grinding material on the wear behavior and tooth face load capacity of continuously generated ground gears was further investigated.