Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.
The merits of CBN physical characteristics over conventional aluminum oxide abrasives in grinding performance are reviewed. Improved surface integrity and consistency in drive train products can be achieved by the high removal rate of the CBN grinding process. The influence of CBN wheel surface conditioning procedure on grinding performance is also discussed.
Until recently, form gear grinding was conducted almost exclusively with dressable, conventional abrasive grinding wheels. In recent years, preformed, plated Cubic Boron Nitride (CBN) wheels have been introduced to this operation and a considerable amount of literature has been published that claim that conventional grinding
wheels will be completely replaced in the future. The superior machining properties of the CBN wheel are not disputed in this paper.