In the gearing industry, gears are lubricated and cooled by various methods. At low to moderate speeds and loads, gears may be partly submerged in the lubricant which provides lubrication and cooling by splash lubrication. With splash lubrication, power loss increases considerably with speed. This is partially because of churning losses. It is shown that gear scoring and surface pitting can occur when the gear teeth are not adequately lubricated and cooled.
Gears are currently run at high speed and under high load. It is a significant problem to develop lubricants and gears with high load-carrying capacity against scoring. The particles of molybdenum disulfide have been considered to increase the scoring resistance of the gears. The wear characteristics and the scoring resistance of the gears lubricated with MoS2 paste and MoS2 powder have been investigated. (1) However, there are few investigations on the performance of the gears coated with MoS2 film with respect to scoring.
On gear drives running with pitch line velocities below 0.5 m/s so called slow speed wear is often observed. To solve
some problems, extensive laboratory test work was started 10 years ago. A total of circ. 300,000 h running time on FZG back-to-back test rigs have been run in this speed range.
The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.