The Kapp Niles ZX series provides high-end productivity, even for bigger gears and larger modules. It is driven by an electrical high-accuracy direct drive, providing a high level of positioning accuracy even for the profile grinding process.
From April to June 2022, prospective attendees will again have the opportunity to learn about current trends and the latest happenings at Klingelnberg. After so many exhibitions were canceled in 2020 due to the coronavirus pandemic, Klingelnberg took the initiative of launching its own WebSeminar series.
Gear noise is among the issues of greatest concern in today's modern gearboxes. Significant research has resulted in the application of enhancements in all phases of gear manufacturing, and the work is ongoing. With the introduction of Electric
Vehicles (EV), research and development in this area has surged in recent years. Most importantly, powerful new noise analysis solutions are fast becoming available.
Following is a report on the R&D findings regarding remediation of high-value, high-demand spiral bevel gears for the UH–60 helicopter tail rotor drivetrain. As spiral bevel gears for the UH–60 helicopter are in generally High-Demand due to the needs of new aircraft production and the overhaul and repair of aircraft returning from service, acquisition of new spiral bevel gears in support
of R&D activities is very challenging. To compensate, an assessment was done of a then-emerging superfinishing method—i.e., the micromachining process (MPP)—as a potential repair technique for spiral bevel gears, as well as a way to enhance their performance and durability. The results are described in this paper.
Gear tooth wear and micropitting are very difficult phenomena to predict
analytically. The failure mode of micropitting is closely correlated to the lambda ratio. Micropitting can be the limiting design parameter
for long-term durability. Also, the failure mode of micropitting can progress to wear or macropitting, and then go on to manifest more severe failure modes, such as bending. The results of a gearbox test and manufacturing process development program will be presented to evaluate super-finishing and its impact on micropitting.
Results from the Technical University
of Munich were presented in a previous technical article (see Ref. 4). This
paper presents the results of Ruhr University Bochum. Both research groups
concluded that superfinishing is one of the most powerful technologies for
significantly increasing the load-carrying capacity of gear flanks.
Surface coatings or finishing processes are the future technologies
for improving the load carrying capacity of case hardened gears. With
the help of basic tests, the influence of different coatings and finishing
processes on efficiency and resistance to wear, scuffing, micropitting,
and macropitting is examined.