Users of gear-cutting tools probably do not often consciously consider the raw material from which those hobs, broaches or shavers are made. However, a rudimentary awareness of the various grades and their properties may allow tool users to improve the performance or life of their tools, or to address tool failures. The high-speed steel from which the tool is made certainly is not the only factor affecting tool performance, but as the raw material, the steel may be the first place to start.
Recent trends in gear cutting technology have left process engineers searching for direction about which combination of cutting tool material, coating, and process technology will afford the best quality at the lowest total cost. Applying the new technologies can have associated risks that may override the potential cost savings. The many interrelated variables to be considered and evaluated tend to cloud the issue and make hobbing process development more difficult.
Nowadays, finish hobbing (which means that there is no post-hobbing gear finishing operation) is capable of producing higher quality gears and is growing in popularity.
Until recently, there was a void in the quality control of gear manufacturing in this country (Ref. 1). Gear measurements were not traceable to the international standard of length through the National Institute of Standards and Technology (NIST). The U.S. military requirement for traceability was clearly specified in the military standard MIL-STD-45662A (Ref. 2). This standard has now been replaced by commercial sector standards including ISO 9001:1994 (Ref. 3), ISO/IEC Guide 25 (Ref, 4), and the U.S. equivalent of ISO/IEC Guide 25 - ANSI/NCSL Z540-2-1997 (Ref. 5). The draft replacement to ISO/IEC Guide 25 - ISO 17025 states that measurements must either be traceable to SI units or reference to a natural constant. The implications of traceability to the U.S. gear industry are significant. In order to meet the standards, gear manufacturers must either have calibrated artifacts or establish their own traceability to SI units.
Plastic gears and transmissions require a different design approach than metal transmissions. Different tools are available to the plastic transmission designer for optimizing his geared product, and different requirements exist for inspection and testing.
This paper will present some of the new technology available to the plastic gear user, including design, mold construction, inspection, and testing of plastic gears and transmissions.
The quality of the material used for highly loaded critical gears is of primary importance in the achievement of their full potential. Unfortunately, the role which material defects play is not clearly understood by many gear designers. The mechanism by which failures occur due to material defects is often circuitous and not readily apparent. In general, however, failures associated with material defects show characteristics that point to the source of the underlying problem, the mechanism by which the failure initiated, and the manner in which it progressed to failure of the component.
Increased productivity in roughing operations for gear cutting depends mainly on lower production costs in the hobbing process. In addition, certain gears can be manufactured by shaping, which also needs to be taken into account in the search for a more cost-effective form of production.
The market demand for gear manufacturers to transmit higher torques via smaller-sized gear units inevitably leads to the use of case-hardened gears with high manufacturing and surface quality. In order to generate high part quality, there is an increasing trend towards the elimination of the process-induced distortion that occurs during heat treatment by means of subsequent hard finishing.
Material selection can play an important role in the constant battle to reduce gear noise. Specifying tighter dimensional tolerances or redesigning the gear are the most common approaches design engineers take to minimize noise, but either approach can add cost to the finished part and strain the relationship between the machine shop and the end user. A third, but often overlooked, alternative is to use a material that has high noise damping capabilities. One such material is cast iron.
New innovations in the management of hear treating parts washers and yielding powerful, unexpected benefits. Simply, cost effective shop floor practices are being combined in new ways to deliver big quality improvements and significant help to the bottom line. Employing these steps early in the process can dramatically cut waste hauling expenses and greatly reduce environmental liabilities while continuously producing cleaner parts.