Kennametal has introduced its next generation 3D printed stator bore tool for the machining of aluminum engine housings for electric vehicles. This latest version of the tool features a newly designed arm structure, a larger center tube made of carbon fiber, and a further weight reduction of greater than 20 percent over the original design.
At Ford’s Advanced Manufacturing Center, Javier is tasked with operating the 3D printers completely on his own. He is always on time, very precise in his movements, and he works most of the day – taking only a short break to charge up. This innovative robot on wheels from supplier KUKA, called Javier by Ford’s additive manufacturing operators, is integral to the company’s development of an industry-first process to operate 3D Carbon printers with an autonomous mobile robot rather than a fixed, stationary unit.
In this article the authors present a loaded tooth contact analysis (LTCA) method for asymmetric gears that provides an accurate and efficient design tool for analyzing and comparing designs. The presented method is implemented in SMT's MASTA software. The authors also present an example comparative study using this tool for an automotive application.
Attempts to eliminate mechanical drive trains in automobiles and trucks have had limited success because of cost, weight, dynamic characteristic, and efficiency of the alternative components.
The first chapter from a new book by Dr. Hermann J. Stadtfeld provides an overview of the need for new technologies and approaches when it comes to developing transmissions for electric vehicles.
There's never been a better time to put the spotlight on e-drive transmissions and electric vehicles. They're obviously not just coming: they're already here. Just check out any auto show or
showroom. That's why Gear Technology magazine is pleased to present the first installment in a series of chapters excerpted from Dr. Hermann J. Stadtfeld's newest book, "E-Drive Transmission
Guide - New solutions for electric- and hybrid transmission
vehicles."
The paper is not the proof of a discovery, but it is the description of a method: the
optimization of the microgeometry for cylindrical gears. The method has been applied and described on some transmissions with helical gears and compound epicyclic, used on different hybrid vehicles. However, the method is also valid for industrial gearboxes.
Noise issues from gear and motor excitation whine are commonly faced by
many within the EV and HEV industry. In this paper the authors present an advanced CAE methodology for troubleshooting and optimizing such NVH phenomenon.