In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears.
This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.
Dear Editor:
In Mr. Yefim Kotlyar's article "Reverse Engineering" in the July/August issue, I found an error in the formula used to calculate the ACL = Actual lead from the ASL = Assumed lead.
The load carrying behavior of gears is strongly influenced by local stress concentrations in the tooth root and by Hertzian pressure peaks in the tooth flanks produced by geometric deviations associated with manufacturing, assembly and deformation processes. The dynamic effects within the mesh are essentially determined by the engagement shock, the parametric excitation and also by the deviant tooth geometry.
I received a letter from Mr. G. W. Richmond, Sullivan Machinery Company, N.H., in which in addition to correcting
mistyping, he made several suggestions
concerning my article "General Equations
for Gear Cutting Tool Calculations."