The performance of an Electric Vehicle Power Unit is directly connected with critical tolerances. Tolerances drive opportunities for performance enhancement with cost reduction. The tests normally used to determine and validate tolerances are both expensive and time consuming with prototype parts. By replacing the initial tests with Digital Twin simulations, results can be obtained quickly, and at a much lower cost. This article discusses one of these tests and the results.
This paper outlines the comparison of
efficiencies for worm gearboxes with
a center distance ranging from 28 -
150 mm that have single reduction from
5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model
to predict worm gearbox efficiency
and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant