Aircraft engines can be made more efficient by integrating planetary gears. In such an application, the planetary gears experience very high load cycles under fully reversed bending loads. Pulsator test rigs, which nowadays offer the possibility to perform UHCF investigations, can only be used for purely pulsating loading of gears. Therefore, for the investigation of the UHCF tooth root load carrying capacity under fully reversed bending load, a back-to-back test rig is required. Back-to-back test rigs usually have speeds of n = 3,000 rpm, which makes investigations in the UHCF range take a very long time. Therefore, a high-speed back-to-back test rig was developed.
Accurate prediction of gear dynamic factors (also known as Kv factors) is necessary to be able to predict the fatigue life of gears. Standards-based calculations of gear dynamic factors have some
limitations. In this paper we use a multibody dynamic model, with all 6 degrees of freedom (DOF) of a high-speed gearbox to calculate gear dynamic factors. The findings from this paper will help engineers to understand numerous factors that influence the prediction of dynamic factors and will help them to
design more reliable gears.
As is well known in involute gearing, “perfect” involute gears never work perfectly in the real world.
Flank modifications are often made to overcome the influences of errors coming from manufacturing and assembly processes as well as deflections of the system. The same discipline applies to hypoid gears.
Investigation of Gear Rattle Phenomena
The article by Messrs. Rust, Brandl and Thien was very interesting in its description of the problem and of some of the interactions which occur.
Spur gear surface endurance tests were conducted to investigate CBN ground AISI 9310 spur gears for use in aircraft applications, to determine their endurance characteristics and to compare the results with the endurance of standard vitreous ground AISI 9310 spur gears. Tests were conducted with VIM-VAR AISI 9210 carburized and hardened gears that were finish ground with either CBN or vitreous grinding methods. Test conditions were an inlet oil temperature of 320 K (116 degree F), an outlet oil temperature of 350 K (170 degree F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. The CBN ground gears exhibited a surface fatigue life that was slightly better than the vitreous ground gears. The subsurface residual stress of the CBN ground gears was approximately the same as that for the standard vitreous ground gears for the CBN grinding method used.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of the gear teeth. Its purpose is to correct errors in index,
helical angle, tooth profile and eccentricity. The process can also improve tooth surface finish and eliminate, by crowned tooth forms, the danger of tooth end load concentrations
in service. Shaving provides for form modifications that reduce gear noise. These modifications can also increase
the gear's load carrying capacity, its factor of safety and its service life.