LMS International helped a Fiat subsidiary develop a new, dynamic vibro-acoustic prediction method to reduce design time and engineering costs through accurate prediction of gear noise in the design phase.
Transmission errors, axial shuttling forces and friction result in bearing forces that serve as the major excitations of gear noise. This paper will use these factors as well as gear stresses and tribological factors to assist in obtaining optimal gear designs.
This article offers an overview of the practical design of a naval gear for combined diesel or gas turbine propulsion (CODOG type). The vibration performance of the gear is tested in a back-to-back test. The gear presented is a low noise design for the Royal Dutch Navy's LCF Frigate. The design aspects for low noise operation were incorporated into the overall gear system design. Therefore, special attention was paid to all the parameters that could influence the noise and vibration performance of the gearbox. These design aspects, such as tooth corrections, tooth loading, gear layout, balance, lubrication and resilient mounting, will be discussed.
For the first time in probably 15 years, I've attended an auto show. Although I haven't been purposely avoiding them, over the past decade or so, the auto industry hasn't given me a compelling reason to go.
Fig. 1 shows the effects of positive and negative rake on finished gear teeth. Incorrect positive rake (A) increase the depth and decreases the pressure angle on the hob tooth. The resulting gear tooth is thick at the top and thin at the bottom. Incorrect negative rake (B) decreases the depth and increases the pressure angle. This results in a cutting drag and makes the gear tooth thin at the top and thick at the bottom.
Grinding in one form or another has been used for more than 50 years to correct distortions in gears caused by the high temperatures and quenching techniques associated with hardening. Grinding improves the lead, involute and spacing characteristics. This makes the gear capable of carrying the high loads and running at the high pitch line velocities required by today's most demanding applications. Gears that must meet or exceed the accuracy requirements specified by AGMA Quality 10-11 or DIN Class 6-7 must be ground or hard finished after hear treatment.
Our research group has been engaged in the study of gear noise for some nine years and has succeeded in cutting the noise from an average level to some 81-83 dB to 76-78 dB by both experimental and theoretical research. Experimental research centered on the investigation into the relation between the gear error and noise. Theoretical research centered on the geometry and kinematics of the meshing process of gears with geometric error. A phenomenon called "out-of-bound meshing of gears" was discovered and mathematically proven, and an in-depth analysis of the change-over process from the meshing of one pair of teeth to the next is followed, which leads to the conclusion we are using to solve the gear noise problem. The authors also suggest some optimized profiles to ensure silent transmission, and a new definition of profile error is suggested.
Joe Arvin comments on his recent trip to Scandinavia and how U.S. defense dollars are being spent overseas. J.D. Smith responds to an article on gear noise from the previous issue.
Noisy gear trains have been a common problem for gear designers for a long time. With the demands for smaller gear boxes transmitting more power at higher
rpms and incumbent demands for greater efficiency, gear engineers are always searching for new ways to reduce vibration and limit noise without increasing costs.