Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.
The need for improved power transmissions that use gears and gearboxes with smaller overall dimensions and with lower noise generation has left manufacturing engineers searching for different methods of gear processing. This search has led to the requirement of hardened gears.
The major focus of the American Gear Manufacturers Association standards activity has been the accurate determination of a gearbox's ability to transmit a specified amount of power for a given amount of time. The need for a "level playing field" in the critical arena was one of the reasons the association was formed in the first place. Over the past 85 years, AGMA committees have spent countless hours "discussing" the best ways to calculate the rating of a gear set, often arguing vigorously over factors that varied the resulting answers by fractions of a percentage point. While all that "science" was being debated in test labs and conference rooms all over the country, out industry's customers were conducting their own experiments through the daily operation of gear-driven equipment of all types.
Welcome to Revolutions, the column that brings you the latest, most up-to-date and easy-to-read information about the people and technology of the gear industry.
It should be obvious by now that gears are more than just mechanical components. We have brought you movies with gears and Shakespeare with gears, jewelry made out of gears and so on. Now we, the humble staff at Addendum, are proud to present gears in the world of music.
Grinding in one form or another has been used for more than 50 years to correct distortions in gears caused by the high temperatures and quenching techniques associated with hardening. Grinding improves the lead, involute and spacing characteristics. This makes the gear capable of carrying the high loads and running at the high pitch line velocities required by today's most demanding applications. Gears that must meet or exceed the accuracy requirements specified by AGMA Quality 10-11 or DIN Class 6-7 must be ground or hard finished after hear treatment.
When it comes to setting the standard for gear making, the auto industry often sets the pace. Thus when automakers went to grinding after hardening to assure precision, so did the machine shops that specialize in gearing. But in custom manufacturing of gears in small piece counts, post-heat treat grinding can grind away profits too.
The type of lubricant and the method of applying it to the tooth flanks of large open gears is very important from the point of view of lubrication technology and maintenance. When selecting the type of lubricant and the application method, it is important to check whether it is possible to feed the required lubricant quantity to the load-carrying tooth flanks, This is necessary to avoid deficient lubrication, damage to the gear and operational malfunctions. It is important to determine the type of lubricant, which may be fluid or grease-like. The consistency of the lubricant will have a direct impact on the ability of the lubrication system to feed adequately the lubricant to the gear. The interactions between the common types of lubricant and the lubrication application methods for open gear drives are shown in Fig. 1.
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gear box. Reduction of this noise is a NASA and U.S. Army goal.