When parts you manufacture pass through numerous processes such as deep hole drilling, machining, hobbing and grinding, a CMM is essential when your customers require 100 percent in-process and final inspection.
Chicken Run - the summer that used stop-motion clay figures - is about a group of chickens laying a plan to escape from their farm before they're turned into chicken pies. Distributed by Steven Spielberg's Dream Works, Chicken Run is also about a group of specially-made worms and wheels.
Grinding in one form or another has been used for more than 50 years to correct distortions in gears caused by the high temperatures and quenching techniques associated with hardening. Grinding improves the lead, involute and spacing characteristics. This makes the gear capable of carrying the high loads and running at the high pitch line velocities required by today's most demanding applications. Gears that must meet or exceed the accuracy requirements specified by AGMA Quality 10-11 or DIN Class 6-7 must be ground or hard finished after hear treatment.
In our last issue, the labels on the drawings illustrating "Involutometry" by Harlan Van Gerpan and C. Kent Reece were inadvertently omitted. For your convenience we have reproduced the corrected illustrations here. We regret any inconvenience this may have caused our readers.
Involute Curve Fundamentals. Over the years many different curves have been considered for the profile of a gear tooth. Today nearly every gear tooth uses as involute profile. The involute curve may be described as the curve generated by the end of a string that is unwrapped from a cylinder. (See Fig. 1) The circumference of the cylinder is called the base circle.
The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.
The following excerpt is from the Revised Manual of Gear Design, Section III, covering helical and spiral gears. This section on helical gear mathematics shows the detailed solutions to many general helical gearing problems. In each case, a definite example has been worked out to illustrate the solution. All equations are arranged in their most effective form for use on a computer or calculating machine.
Among the various types of gearing systems available to the gear application engineer is the versatile and unique worm and worm gear set. In the simpler form of a cylindrical worm meshing at 90 degree axis angle with an enveloping worm gear, it is widely used and has become a traditional form of gearing. (See Fig. 1) This is evidenced by the large number of gear shops specializing in or supplying such gear sets in unassembled form or as complete gear boxes. Special designs as well as standardized ratio sets covering wide ratio ranges and center distanced are available with many as stock catalog products.