Forest City Gear applies advanced gear shaping and inspection technologies to help solve difficult lead crown correction challenges half a world away. But these solutions can also benefit customers much closer to home, the company says. Here's how…
Faithful Addendum readers are accustomed to finding upbeat, whimsical and oddball stories about gears in this
space. What follows is not about gears, exactly. Rather, it is, as opposed to the usual bleak news about America losing its manufacturing mojo—a look at a positive, hopeful development in that regard.
In this article, the authors calculated the numerical coordinates on the tooth surfaces of spiral bevel gears and then modeled the tooth profiles using a 3-D CAD system. They then manufactured the
large-sized spiral bevel gears based on a CAM process using multi-axis control and multi-tasking machine tooling. The
real tooth surfaces were measured using a coordinate measuring machine and the tooth flank form errors were detected
using the measured coordinates. Moreover, the gears were meshed with each other and the tooth contact patterns were investigated. As a result, the validity of this manufacturing method was confirmed.
It is said that “The squeaky wheel
gets the grease.” Ok, but what about gear noise? We talked to three experts with
considerable knowledge and experience
in this area.
A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material,
shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the “chip” through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.
Dana Corp. is developing a process that carburizes a straight bevel gear to a carbon content of 0.8% in 60 fewer minutes than atmosphere carburizing did with an identical straight bevel.