This study deals with the modeling and consideration of misalignments in planetary gearboxes in the optimization and design process. Procedures for taking into account misalignments in cylindrical gearboxes are standardized and established in industry. Misalignments of central elements like carrier, sun gear or ring gear in planetary gearboxes, cause varying contact positions and variable loads, depending on the angular position of the central elements. This load, which is variable over the circumference, is not taken into account in the standardized procedures, despite its effects on the loads on the gears.
Question: I am a gear engineer for a motor manufacturer in China. I am writing about noise generated from cross-helical gear assembly error. I want to learn the relationship between the misalignment (center distance change and cross-angle shift) and transmission error. It is better under the loading and theory conditions. What is the trend of cross-helical gear development (use ZI worm and involute helical gear, point contact)?
This paper outlines the comparison of
efficiencies for worm gearboxes with
a center distance ranging from 28 -
150 mm that have single reduction from
5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model
to predict worm gearbox efficiency
and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant
In order to properly select a grease for a particular application, a sound knowledge of the influence of different grease components and operating conditions on the lubrication supply mechanism and on different failure modes is of great benefit.
In this study, the combined influence of shaft misalignments and gear lead crown on load distribution and tooth bending stresses is investigated. Upon conclusion, the experimental results are correlated with predictions of a gear load distribution model, and recommendations are provided for optimal lead crown in a given misalignment condition.