Thanks to our many hardworking volunteer committee members, 2022 was a productive year for the AGMA Technical Division with the publication of two new and three revised information sheets. Looking ahead to 2023, many AGMA technical committees plan to meet face to face for the first time since 2019, and they will continue work on ten projects.
SMT's latest webinar "MASTA Support - Tips, Tricks and FAQ" will take place May 4, 2022. The SMT customer support team receive queries covering all areas of MASTA, with industry 'hot topics' inevitably arising. In this webinar, SMT engineers focus on answering some of the queries that frequently make it into their support inbox.
There are many different gear rating methods in use today, and they can give substantially different results for any given gearset. This paper will make it easy to understand the choices and the impact the choices have on gearbox design. Eight standards are included - AGMA 2001; AGMA 6011; AGMA 6013; ISO 6336; API 613; API 617; API 672; and API 677. (Click HERE for the Appendix to this article).
I have a query (regarding) calculated gear life values. I would like to understand for what % of gear failures the calculated life is valid? Is it 1-in-100 (1% failure, 99% reliability) or 1-in-one-thousand (0.1% failure)?
The objective of this work is to introduce a method for the calculation of the tooth root load carrying capacity for gears, under consideration of the influence of the defect size on the endurance fatigue strength of the tooth root. The theoretical basis of this method is presented in this paper as well as the validation in running tests of helical and beveloid gears with different material batches, regarding the size distribution of inclusions. The torque level for a 50 percent failure probability of the gears is evaluated on the test rig and then compared to the results of the simulation. The simulative method allows for a performance of the staircase method that is usually performed physically in the back-to-back tests for endurance strength, as the statistical influence of the material properties is considered in the calculation model. The comparison between simulation and tests shows a high level of accordance.
Although gear geometry and the design of asymmetric tooth gears are well known and published, they are not covered by modern national or international gear design and rating standards. This limits their broad implementation for various gear applications, despite substantial performance advantages in comparison to symmetric tooth gears for mostly unidirectional drives. In some industries — like aerospace, that are accustomed to using gears with non-standard tooth shapes — the rating of these gears is established by comprehensive testing. However, such testing programs are not affordable for many other gear drive applications that could also benefit from asymmetric tooth gears.
In order to improve load-carrying capacity and noise behavior, gears usually have profile and lead modifications. Furthermore, in gears where a specified tooth-flank load application direction (for drive and coast flanks) is a design enhancement, or even compulsory, the asymmetric tooth profile is a further solution. Nowadays, many gears need to be hard finished. Continuous generating grinding offers a very high process efficiency, but is this process able to grind all modifications, especially asymmetric gears? Yes, it is!
In several applications like hoisting equipment and cranes, open gears are used to transmit power at rather low speeds (tangential velocity < 1m/s) with lubrication by grease. In consequence those applications have particularities in terms of lubricating conditions and friction involved, pairing of material between pinion and gear wheel, lubricant supply, loading cycles and behavior of materials with significant contact pressure due to lower number of cycles.