Helical gear pairs with narrow face width can be theoretically classified into three categories over the contact ration domain whose abscissa is the transverse contact ration and whose ordinate is the overlap contact ratio. There is a direct relation between vibration magnitude and shaft parallelism deviation. To clarify the effect of the tooth deviation types on the vibration behavior of helical gear pairs, performance diagrams on vibration are introduced. the acceleration levels of gear pairs are shown by contour lines on the contact ratio domain. Finally, the performance of gears with bias-in and bias-out modifications is discussed considering the effect of the shaft parallelism deviation with use of the developed simulator on a helical gear unit. It becomes clear that there is an asymmetrical feature on the relation between the vibration magnitude of a gear pair and the direction of each deviation.
Powder metal. To gear makers today, the phrase conjures images of low power applications in non-critical systems. As powder metal technology advances, as the materials increase in density and strength, such opinions are changing. It is an ongoing, evolutionary process and one that will continue for some time. According to Donald G. White, the executive director of the Metal Powder Industries Federation, in his State-of-the-P/M Industry - 1999 report. "The P/M world is changing rapidly and P/M needs to be recognized as a world-class process - national, continental and even human barriers and prejudices must be eliminated - we must join forces as a world process - unified in approach and goals."
Planetary gear transmissions are compact, high-power speed reducers that use parallel load paths. The range of possible reduction ratios is bounded from below and above by limits on the relative size of the planet gears. For a single-plane transmission, the planet gear has no size of the sun and ring. Which ratio is best for a planetary reduction can be resolved by studying a series of optimal designs. In this series, each design is obtained by maximizing the service life for a planetary transmission with a fixed size, gear ratio, input speed, power and materials. The planetary gear reduction service life is modeled as a function of the two-parameter Weibull distributed service lives of the bearings and gears in the reduction. Planet bearing life strongly influences the optimal reduction lives, which point to an optimal planetary reduction ratio in the neighborhood of four to five.
Jules Kish responds to comments about his article on finding a hunting ratio, and Dr. Sante Basili argues that shaving is still the best way to finish a rough-cut gear.
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.
Gleason Corporation has announced that agreement has been reached on all terms to acquire for approximately $36 million in cash the Hermann Pfauter Group, including, among other operations, Hermann Pfauter GmbH & Co., a privately held leading producer of gear equipment based in Ludwigsburg, Germany; its 76% interest in Pfauter-Maad Cutting Tools, a leading cutting tool manufacturer basked in Loves Park, IL; and Pfauter-Maag management's 24% ownership interest in that company. The acquisition includes all assets and liabilities, including the assumption of approximately $56 million in bank debt.
When designing a gear set, engineers usually want the teeth of the gear (Ng) and the pinion (Np) in a "hunting" mesh. Such a mesh or combination is defined as one in which the pinion and the gear do not have any common divisor by a prime number. If a mesh is "hunting," then the pinion must make Np x Ng revolutions before the same pinion tooth meshes with the same gear space. It is often easy to determine if a mesh is hunting by first determining if both the pinion and the gear teeth are divisible by 2,3,5,7,etc. (prime numbers). However, in this age of computerization, how does one program the computer to check for hunting teeth? A simple algorithm is shown below.
The American Society of Mechanical Engineers (ASME) announced at Gear Expo '95 that a national service for the calibration of involute artifacts is now available at the Department of Energy's Y-12 Plant in Oak Ridge, TN.
In some gear dynamic models, the effect of tooth flexibility is ignored when the model determines which pairs of teeth are in contact. Deflection of loaded teeth is not introduced until the equations of motion are solved. This means the zone of tooth contact and average tooth meshing stiffness are underestimated, and the individual tooth load is overstated, especially for heavily loaded gears.
This article compares the static transmission error and dynamic load of heavily loaded, low-contact-ratio spur gears when the effect of tooth flexibility has been considered and when it has been ignored. Neglecting the effect yields an underestimate of resonance speeds and an overestimate of the dynamic load.
The finished gear engineer, the man who is prepared for all emergencies, must first of all know the basic design principles.
Next he must be well versed in all sorts of calculations which come under the heading of "involute trigonometry."