A single tooth bending (STB) test procedure has been developed to optimally map gear design parameters. Also, a test program on case-carburized, aerospace standard gears has been conceived and performed in order to appreciate the influence of various technological parameters on fatigue resistance and to draw the curve shape up to the gigacycle
region.
This article presents a new spur gear 20-degree design that works interchangeably with the standard 20-degree system and achieves increased tooth bending strength and hence load carrying capacity.
When it comes to setting the standard for gear making, the auto industry often sets the pace. Thus when automakers went to grinding after hardening to assure precision, so did the machine shops that specialize in gearing. But in custom manufacturing of gears in small piece counts, post-heat treat grinding can grind away profits too.
For the last few years, the market has been tough for the U.S. gear industry. That statement will cause no one any surprise. The debate is about what to do. One sure sign of this is the enormous attention Congress and the federal government are now placing on "competitiveness."
In the design of any new gear drive, the performance of previous similar designs is very carefully considered. In the course of evaluating one such new design, the authors were faced with the task of comparing it with two similar existing systems, both of which were operating quite successfully. A problem arose, however, when it was realized that the bending stress levels of the two baselines differed substantially. In order to investigate these differences and realistically compare them to the proposed new design, a three-dimensional finite-element method (FEM) approach was applied to all three gears.
Much of the information in this article
has been extracted from an AGMA
Technical Paper, "What Single Flank
Testing Can Do For You", presented in
1984 by the author