This paper introduces the latest process developments for the hard-finishing of gears, specifically in regard to controlling the so-called flank twist.
This paper presents a new approach to repair industrial gears by showing a case study where pressure angle modification is also considered, differently from the past repairing procedures that dealt only with the modification of the profile shift
coefficient. A computer program has been developed to automatically determine the repair alternatives under two goals: minimize the stock removal or maximize gear tooth strength.
This paper outlines the comparison of
efficiencies for worm gearboxes with
a center distance ranging from 28 -
150 mm that have single reduction from
5 to 100:1. Efficiencies are calculated using several standards (AGMA, ISO, DIN, BS) or by methods defined in other bibliographic references. It also deals with the measurement of torque and temperature on a test rig — required for the calibration of an analytical model
to predict worm gearbox efficiency
and temperature. And finally, there are examples of experimental activity (wear and friction measurements on a blockon- ring tribometer and the measurements of dynamic viscosity) regarding the effort of improving the efficiency for worm gear drivers by adding nanoparticles of fullerene shape to standard PEG lubricant
It’s a brave, new hardware-software world out there. Players in the worldwide gear industry who don’t have plenty of both run the risk of becoming irrelevant—sooner than later.
The machine element package by KISSsoft for the design and optimization of components like gears, shafts, bearings and others is now available in the new version 04/2010.
Several innovations have been introduced to the gear manufacturing industry in recent years. In the case of gear hobbing—the dry cutting technology and the ability to do it with powder-metallurgical HSS—might be two of the most impressive ones. And the technology is still moving forward. The aim of this article is to present recent developments in the field of gear hobbing in conjunction with the latest improvements regarding tool materials, process technology
and process integration.
Modern gearboxes are characterized by high torque load demands, low running noise and compact design. In order
to fulfill these demands, profile and lead modifications are being applied more often than in the past. This paper will focus on how to produce profile and lead modifications by using the two most common grinding processes—threaded
wheel and profile grinding. In addition, more difficult modifications—such as defined flank twist or topological flank corrections—will also be described in this paper.