Powder metallurgy (P/M) techniques have proven successful in displacing many components within the automobile drive train, such as: connecting rods, carriers, main bearing caps, etc. The reason for P/M’s success is its ability to offer the design engineer the required mechanical properties with
reduced component cost.
There are great advantages in dry hobbing, not only for friendliness
toward the environment, but also for increasing productivity and for decreasing manufacturing cost. Dry hobbing, however, often causes failures in hob cutting edges or problems with the surface quality of gear tooth flanks. These difficulties are not present when hobbing with cutting oil. Pinching and crushing of generated chips between the hob cutting edge and the work gear tooth flank is considered a major cause of those problems.
Instances of damage to discontinuous form ground and surface-hardened gears, especially of large scale, have recently increased. This may be attributed partly to a faulty grinding process with negative effects on the surface zones and the surface
properties.
Hobs, broaches, shaper cutters,
shaver cutters, milling cutters,
and bevel cutters used in the
manufacture of gears are commonly
made of high speed steel. These specialized gear cutting tools often require properties, such as toughness or manufacturability, that are difficult to achieve with carbide, despite the developments in carbide cutting tools for end mills, milling cutters, and tool inserts.
Flexibility and productivity are the keywords in today’s grinding operations. Machines are becoming
more flexible as manufacturers look
for ways to produce more parts at a
lower cost. What used to take two
machines or more now takes just one.
Recent breakthroughs in profile grinding software are helping Anderson Precision Gears and others meet wind power’s insatiable appetite for faster
production of large, high-quality gears.