In order to improve load-carrying capacity and noise behavior, gears usually have profile and lead modifications. Furthermore, in gears where a specified tooth-flank load application direction (for drive and coast flanks) is a design enhancement, or even compulsory, the asymmetric tooth profile is a further solution. Nowadays, many gears need to be hard finished. Continuous generating grinding offers a very high process efficiency, but is this process able to grind all modifications, especially asymmetric gears? Yes, it is!
Toyoda's new GS300H5 Gear Skiving Center is the first in the world to equip a skiving function to a general purpose horizontal machining center (HMC), through which mass production of gear parts is achieved. CNC controls and a high speed rotary table were developed specifically to achieve high-speed, multifunctional machining, as a compact and lightweight product, simple in programming functions.
Skiving will be front and center when the gear industry comes together in Columbus this October. Attendees will find dedicated skiving equipment, multifunctional machines with skiving options and a slew of new cutting tools, machine designs and modifications to make the process more efficient and robust.
RCD Engineering's switch from manual to CNC hobbing operations breaks gear manufacturing lead time records with
Bourn & Koch 100H in their gear production pit crew.
AGMA Sets Up Shop in Living Laboratory of the Midwest. Columbus, Ohio recently surpassed Indianapolis as the second largest city in the Midwest behind Chicago, according to the United States Census Bureau. This could change come the
2020 census, but there's no denying
Buckeye Nation is going places.
Gear hobbing is one of the most productive manufacturing processes for cylindrical gears. The quality of the gears is a result of the tool quality, the precision of the workpiece, tool clamping and kinematics of the machine. The dry gear hobbing process allows machining of gears with a quality according to the DIN standard up to IT 5. To evaluate which gear quality is possible to machine with a given clamping and hob, it is useful to simulate the process in advance.
Grinding of bevel and hypoid gears creates on the surface a roughness structure with lines that are parallel to the root. Imperfections of those lines often repeat on preceding teeth, leading to a magnification of the amplitudes above the tooth mesh frequency and their higher harmonics. This phenomenon is known in grinding and has led in many cylindrical gear applications to an additional finishing operation (honing). Until now, in bevel and hypoid gear grinding, a short time lapping of pinion and gear after the grinding operation, is the only possibility to change the surface structure from the strongly root line oriented roughness lines to a diffuse structure.