The modern day requirement for
precision finished hobbed gears, coupled
with the high accuracy characteristics of
modern CNC hobbing machines, demands high tool accuracy.
A pair of spur gears generally has an effective lead error which is caused, not only by manufacturing and assembling errors, but also by the deformations of shafts, bearings and housings due to the transmitted load. The longitudinal load distribution on a contact line of the teeth of the gears is not uniform because of the effective lead error.
The higher load carrying capacities, compact dimensions and longer life of hardened gears is an accepted fact in industry today. However, the costs involved in case hardening and subsequent finishing operations to achieve these advantages are considerable. For example, in order to achieve desired running properties on larger gears, it has been necessary to grind the tooth flanks. This costly operation can now be replaced, in many cases, by a new Hard Cutting (HC)
process which permits the cutting of hardened gears while maintaining extremely low tooling costs.
These are changing times for industry. Trauma and uncertainty are always a part of change, and change is not always for the better. Change is usually forced, most frequently by competition. Our competitive free enterprise system should be able to respond to competition because that's its basis. These are critical years. If we do not respond effectively to change and competition, it could be disasterous.
In conventional gear grinders, grinding wheels with Alundum grains and a hardness of about 2000 HV have been used for finishing steel gears with hardnesses up to about 1000HV. In this case, the accuracy of the gears ground is greatly affected by wear of the grinding wheel because the difference in hardness is comparatively small when the gears are fully hardened.
Since we are a high volume shop, we were particularly interested in Mr. Kotlyar's article describing the effects of hob length on production efficiency which appeared in the Sept/Oct issue of Gear Technology. Unfortunately, some readers many be unnecessarily deterred from applying the analysis to their own situations by the formidabilty of the mathematical calculations. I am making the following small suggestion concerning the evaluation of the constant terms.
Until recently, form gear grinding was conducted almost exclusively with dressable, conventional abrasive grinding wheels. In recent years, preformed, plated Cubic Boron Nitride (CBN) wheels have been introduced to this operation and a considerable amount of literature has been published that claim that conventional grinding
wheels will be completely replaced in the future. The superior machining properties of the CBN wheel are not disputed in this paper.
Sub: 'Finding Tooth Ratios' article published in Nov/Dec 1985 issue
Let us congratulate you and Orthwein, W.C. for publishing this superb article in Gear Technology Journal. We liked the article very much and wish to impliment it in our regular practice.
The following is a general overview of some of the different factors that lead to the specific design. and the selection of the correct tool for a given hobbing application.