The proper design or selection of gear cutting tools requires thorough and detailed attention from the tool designer. In addition to experience, intuition and practical knowledge, a
good understanding of profile calculations is very important.
Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it
a logical choice for a wide range of sizes.
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.
As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.
The gear hobbing process is a generating type of production operation. For this
reason, the form of the hob tooth is
always different from the form of the
tooth that it produces.
The Integral Temperature Method for the evaluation of the scoring load capacity of gears is described. All necessary equations for the practical application are presented. The limit scoring temperature for any oil can be obtained from a gear scoring test.
Universal machines capable of cutting both spur and helical gears were developed in 1910, followed later by machines capable of cutting double helical gears with continuous teeth. Following the initial success, the machines were further developed both in England and France under the name Sunderland, and later in Switzerland under the name Maag.
A brief introduction to the subject of Thin Film Coatings and their application to gear hobs and shaper cutters is followed by a detailed description of the Chemical Vapor Deposition Process and the Physical Vapor Deposition Process. Advantages and disadvantages of each of these processes is discussed. Emphasis is placed upon: application engineering of coated gear tools based on laboratory and field test results. Recommendations are suggested for tool design improvements and optimization of gear cutting operations using coated tools. Productivity improvements potentially available by properly utilizing
coated tools are considered in terms of both tool cost and machining cost.