These are changing times for industry. Trauma and uncertainty are always a part of change, and change is not always for the better. Change is usually forced, most frequently by competition. Our competitive free enterprise system should be able to respond to competition because that's its basis. These are critical years. If we do not respond effectively to change and competition, it could be disasterous.
Since we are a high volume shop, we were particularly interested in Mr. Kotlyar's article describing the effects of hob length on production efficiency which appeared in the Sept/Oct issue of Gear Technology. Unfortunately, some readers many be unnecessarily deterred from applying the analysis to their own situations by the formidabilty of the mathematical calculations. I am making the following small suggestion concerning the evaluation of the constant terms.
The following is a general overview of some of the different factors that lead to the specific design. and the selection of the correct tool for a given hobbing application.
Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it
a logical choice for a wide range of sizes.
Your May/June issue contains a
letter from Edward Ubert of Rockwell
International with some serious questions
about specifying and measuring tooth thickness.
As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.
The gear hobbing process is a generating type of production operation. For this
reason, the form of the hob tooth is
always different from the form of the
tooth that it produces.
A brief introduction to the subject of Thin Film Coatings and their application to gear hobs and shaper cutters is followed by a detailed description of the Chemical Vapor Deposition Process and the Physical Vapor Deposition Process. Advantages and disadvantages of each of these processes is discussed. Emphasis is placed upon: application engineering of coated gear tools based on laboratory and field test results. Recommendations are suggested for tool design improvements and optimization of gear cutting operations using coated tools. Productivity improvements potentially available by properly utilizing
coated tools are considered in terms of both tool cost and machining cost.