Beginning with our next issue, some of the promised changes in format for Gear Technology will begin showing up in these pages. As part of our commitment to provide you with important information about the gear and gear products industry, we are expanding our coverage. In addition to continuing to publish some of the best results of gear research and development throughout the world, we will be adding special columns covering vital aspects of the gearing business.
An investigation of transmission errors and bearing contact of spur, helical, and spiral bevel gears was performed. Modified tooth surfaces for these gears have been proposed in order to absorb linear transmission errors caused by gear misalignment and to localize the bearing contact. Numerical examples for spur, helical, and spiral bevel gears are presented to illustrate the behavior of the modified gear surfaces with respect to misalignment and errors of assembly. The numerical results indicate that the modified surfaces will perform with a low level of transmission error in non-ideal operating environments.
Traditional methods of manufacturing precision gears usually employ either hobbing or shaper cutting. Both of these processes rely upon generating the conjugate tooth form by moving the work-piece in a precise relation to the tool. Recently, attention has been given to forming gear teeth in a single step. Advantages to such a process include reduced production time, material savings, and improved performance characteristics. Drawbacks include complicated tool designs, non-uniformity of gears produced throughout the life of the tooling, and lengthy development times.
This article presents an efficient and direct method for the synthesis of compound planetary differential gear trains for the generation of specified multiple speed ratios. It is a train-value method that utilizes the train values of the integrated train components of the systems to form design equations which are solved for the tooth numbers of the gears, the number of mating gear sets and the number of external contacts in the system. Application examples, including vehicle differential transmission units, rear-end differentials with unit and fractional speed ratios, multi-input functions generators and robot wrist joints are given.
Cutter Sharpening
Cutter sharpening is very important both during manufacturing and subsequently in resharpening after dulling. Not only does this process affect cutter "over cutting edge" quality and the quality of the part cut, but it can also affect the manner in which chip flow takes place on the cutter face if the surface finished is too rough or rippled.
Gear shaping is one of the most popular production choices in gear manufacturing. While the gear shaping process is really the most versatile of all the gear manufacturing methods and can cut a wide variety of gears, certain types of gears can only be cut by this process. These are gears closely adjacent to shoulders; gears adjacent to other gears, such as on countershafts; internal gears, either open or blind ended; crown or face gears; herringbone gears of the solid configuration of with a small center groove; rack; parts with filled-in spaces or teeth, such as are used in some clutches.
After shaping or hobbing, the tooth flanks must be either chamfered or duburred. Here it is paramount that the secondary burr produced will not be formed into the flank, but to the face of the gear, because during hardening, the secondary burr will straighten up and, due to its extreme hardness, will lead to excessive tool wear.
Profitable hard machining of tooth flanks in mass production has now become possible thanks to a number of newly developed production methods. As used so far, the advantages of hard machining over green shaving or rolling are the elaborately modified tooth flanks are produced with a scatter of close manufacturing tolerances. Apart from an increase of load capacity, the chief aim is to solve the complex problem of reducing the noise generation by load-conditioned kinematic modifications of the tooth mesh. In Part II, we shall deal with operating sequences and machining results and with gear noise problems.
This article deals with certain item to be taken into consideration for gear grinding, common problems that arise in gear grinding and their solutions. The discussion will be limited to jobbing or low-batch production environments, where experimental setup and testing is not possible for economic and other reasons.