Sivyer Steel Corporation, Bettendorf, IA, an ISO-9002-certified casting specialist, is familiar with tackling tough jobs. The company has built an international reputation as a supplier of high-integrity castings, especially those which require engineering and/or full machining. Its not unusual for Sivyer's customers, especially those in the mining, recycling, power generation, valve and nuclear fields, to ask the foundry to produce a one-of-a-kind casting - often something revolutionary - but AnClyde Engineered Products' request was a special challenge, even for Sivyer.
Increasingly gear designers and product engineers are capitalizing on the economic advantages of powder metallurgy (P/M) for new and existing gear applications. Powder metal gears are found in automobiles, outdoor power equipment transmissions and office machinery applications as well as power hand tools, appliances and medial components.
Surface-hardened, sintered powder metal gears are increasingly used in power transmissions to reduce the cost of gear production. One important problem is how to design with surface durability, given the porous nature of sintered gears. Many articles have been written about mechanical characteristics, such as tensile and bending strength, of sintered materials, and it is well-known that the pores existing on and below their surfaces affect their characteristics (Refs. 1-3). Power transmission gears are frequently employed under conditions of high speed and high load, and tooth surfaces are in contact with each other under a sliding-rolling contact condition. Therefore it is necessary to consider not only their mechanical, but also their tribological characteristics when designing sintered gears for surface durability.
Gear grinding is one of the most expensive and least understood aspects of gear manufacturing. But with pressures for reduced noise, higher quality and greater efficiency, gear grinding appears to be on the rise.
There are problems in dimensional measurement that should be simple to solve with standard measuring procedures, but aren't. In such cases, using accepted practices may result in errors of hundreds of microns without any warning that something is wrong.
Question: We are contemplating purchasing a hobbing machine with dry hobbing capabilities. What do we need to know about the special system requirements for this technology?
In today's economy, when purchasing a new state-of-the-art gear shaper means a significant capital investment, common sense alone dictates that you develop strategies to get the most for your money. One of the best ways to do this is to take advantage of the sophistication of the machine to make it more than just a single-purpose tool.
In today's industrial marketplace, deburring and chamfering are no longer just a matter of cosmetics. The faster speeds at which transmissions run today demand that gear teeth mesh as smoothly and accurately as possible to prevent premature failure. The demand for quieter gears also requires tighter tolerances. New heat treating practices and other secondary gear operations have placed their own set of demands on manufacturers. Companies that can deburr or chamfer to these newer, more stringent specifications - and still keep costs in line - find themselves with a leg up on their competition.
In the quest for ever more exacting and compact commercial gears, precision abrasives are playing a key production role - a role that can shorten cycle time, reduce machining costs and meet growing market demand for such requirements as light weights, high loads, high speed and quiet operation. Used in conjunction with high-quality grinding machines, abrasives can deliver a level of accuracy unmatched by other manufacturing techniques, cost-effectively meeting AGMA gear quality levels in the 12 to 15 range. Thanks to advances in grinding and abrasive technology, machining has become one of the most viable means to grind fast, strong and quiet gears.
For this interview, we spoke with George Wyss, president, and Dennis Richmond, vice president of Reishauer Corporation about gear grinding and its place in gear manufacturing today.