Editor's Note: The following article details the advantages of synthetic lubricants in certain applications. However, the user should be aware of certain design issues arising from the extract chemistry of the synthetic. For example, some synthetics may have low solvency for additives. Others may not be compatible with mineral oils or nonmetallic components such as seals and paints. Some synthetics may absorb water and may not have the same corrosion resistance as mineral oils. Finally, the user should consider biodegradability or toxicity before switching to any new lubricant. Many of these concerns are present in petroleum-based lubricants as well, so consult a lubrication specialist before specifying a lubricant.
A major source of helicopter cabin noise (which has been measured at over 100 decibels sound pressure level) is the gearbox. Reduction of this noise is a NASA and U.S. Army goal. A requirement for the Army/NASA Advanced Rotorcraft Transmission project was a 10 dB noise reduction compared to current designs.
Analysis of helical involute gears by tooth contact analysis shows that such gears are very sensitive to angular misalignment leading to edge contact and the potential for high vibration. A new topology of tooth surfaces of helical gears that enables a favorable bearing contact and a reduced level of vibration is described. Methods for grinding helical gears with the new topology are proposed. A TCA program simulating the meshing and contact of helical gears with the new topology has been developed. Numerical examples that illustrate the proposed ideas are discussed.
Grinding is a technique of finish-machining, utilizing an abrasive wheel. The rotating abrasive wheel, which id generally of special shape or form, when made to bear against a cylindrical shaped workpiece, under a set of specific geometrical relationships, will produce a precision spur or helical gear. In most instances the workpiece will already have gear teeth cut on it by a primary process, such as hobbing or shaping. There are essentially two techniques for grinding gears: form and generation. The basic principles of these techniques, with their advantages and disadvantages, are presented in this section.