Hobbing is one of the most fundamental
processes in gear manufacturing. Its
productivity and versatility make hobbing
the gear manufacturing method of choice for a majority of spur and helical
gears.
In today’s manufacturing environment, shorter and more efficient product
development has become the norm. It is therefore important to consider every
detail of the development process, with a particular emphasis on design. For
green machining of gears, the most productive and important process is hobbing. In order to analyze process design for this paper, a manufacturing simulation was developed capable of calculating chip geometries and process forces based on different models. As an important tool for manufacturing technology engineers, an economic feasibility analysis is implemented as well. The aim of this paper is to show how an efficient process design—as well as an efficient process—can be designed.
The objective, according to Dr.-
Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.
It is said that “The squeaky wheel
gets the grease.” Ok, but what about gear noise? We talked to three experts with
considerable knowledge and experience
in this area.