The modern day requirement for
precision finished hobbed gears, coupled
with the high accuracy characteristics of
modern CNC hobbing machines, demands high tool accuracy.
NC and CNC metal cutting machines are among the most popular machine tools in the business today, There is also a strong trend toward using flexible
machining centers and flexible manufacturing systems. The same trend is apparent in gear cutting. Currently the trend toward CNC tools has increased, and sophisticated controls and peripheral equipment for gear cutting machines are now available; however, the investment in a CNC gear machine has to be justified on the basis of economic facts as well as technical advantages.
Today it is common practice when
climb hobbing to keep the direction of
the hob thread the same as that of the
helical gear. The same generalization
holds true for the mass production of
gears for automobiles. It is the authors' opinion, however, that conventional hobbing with a reverse-handed hob is more effective for the high-speed manufacture of comparatively small module gears for automobiles. The authors have proven both experimentally and theoretically that reverse-handed conventional hobbing, using a multi-thread hob with a smaller diameter is very effective for lengthening the life of the hob and for increasing cutting efficiency at high speeds.
The forming of gear teeth has traditionally been a time-consuming heavy stock removal operation in which close tooth size, shape, runout and spacing accuracy are required. This is true whether the teeth are finished by a second forming operation or a shaving operation.
Since we are a high volume shop, we were particularly interested in Mr. Kotlyar's article describing the effects of hob length on production efficiency which appeared in the Sept/Oct issue of Gear Technology. Unfortunately, some readers many be unnecessarily deterred from applying the analysis to their own situations by the formidabilty of the mathematical calculations. I am making the following small suggestion concerning the evaluation of the constant terms.
Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel
shafts.
One of the current research
activities here at California State University at Fullerton is systematization of existing knowledge of design of planetary gear trains.
Hobbing is probably the most popular gear manufacturing process. Its inherent accuracy and productivity makes it
a logical choice for a wide range of sizes.
As we approach the problem of hard gear processing, it is well to take a look at the reason for discussing it at this time. In our present economic atmosphere throughout the world, more and more emphasis is being placed upon efficiency which is dictated by higher energy costs.
The gear hobbing process is a generating type of production operation. For this
reason, the form of the hob tooth is
always different from the form of the
tooth that it produces.