The heat treatment processing of powder metal (PM) materials like Astaloy requires four steps -- de-waxing, HT sintering, carburizing and surface hardening -- which are usually achieved in dedicated, atmospheric furnaces for sintering and heat treat, respectively, leading to intermediate handling operations and repeated heating and cooling cycles. This paper presents the concept of the multi-purpose batch vacuum furnace, one that is able to realize all of these steps in one unique cycle. The multiple benefits brought by this technology are summarized here, the main goal being to use this technology to manufacture high-load transmission gears in PM materials.
For metal replacement with powder metal (PM) of an automotive transmission, PM gear design differs from its wrought counterpart. Indeed, complete reverse-engineering and re-design is required so to better understand and document the performance parameters of solid-steel vs. PM gears. Presented here is a re-design (re-building a 6-speed manual transmission for an Opel Insignia 4-cylinder, turbocharged 2-liter engine delivering 220 hp/320 N-m) showing that substituting a different microgeometry of the PM gear teeth -- coupled with lower Young’s modulus -- theoretically enhances performance when compared to the solid-steel design.
This paper will provide examples of stress levels from conventional root design using a hob and stress levels using an optimized root design that is now possible with PM manufacturing. The paper will also investigate how PM can reduce stresses in the root from transient loads generated by abusive driving.
Capstan Atlantic, located in Wrentham, Massachusetts, produces powder metal gears, sprockets and complex structural
components. The company has provided unique powder metal products in a variety of industries including automotive, business machines, appliances, lawn and garden equipment
and recreational vehicles.
Except for higher-end gear applications
found in automotive and aerospace transmissions, for example,
high-performance, sintered-steel
gears match wrought-steel gears in strength and geometrical quality. The enhanced P/M performance is due largely to advances in powder metallurgy over last two decades, such as selective surface densification, new materials and
lubricants for high density and
warm-die pressing. This paper is a
review of the results of a decade of
research and development of high- performance, sintered-steel gear prototypes.
The objective, according to Dr.-
Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.