The search for greater gear life involves improvement in cost, weight and increased power output. There are many events that affect gear life, and this paper addresses those relating to fatigue, gear tooth pitting, fatigue strength losses due to the heat treating processes and shot peening technique. The capability of shot peening to increase fatigue strength and surface fatigue life eliminate machine marks which cause stress risers, and to aid in lubrication when properly controlled, suggests increased use and acceptance of the process.
The most conclusive test of bevel and hypoid gears is their operation under normal running conditions in their final mountings. Testing not only maintains quality and uniformity during manufacture, but also determines if the gears will be satisfactory for their intended applications.
Anyone involved in the design, manufacture and use of gears is concerned with three general characteristics relative to their application: noise, accuracy, and strength or surface durability. In the article, we will be dealing with probably the most aggravating of the group, gear noise.
Until recently, form gear grinding was conducted almost exclusively with dressable, conventional abrasive grinding wheels. In recent years, preformed, plated Cubic Boron Nitride (CBN) wheels have been introduced to this operation and a considerable amount of literature has been published that claim that conventional grinding
wheels will be completely replaced in the future. The superior machining properties of the CBN wheel are not disputed in this paper.
Gear surface fatigue endurance tests
were conducted on two groups of 10
gears each of carburized and hardened
AlSI 9310 spur gears manufactured from
the same heat of material
A gear can be defined as a toothed wheel which, when meshed with another toothed wheel with similar configuration, will transmit rotation from one shaft to another. Depending upon the type and accuracy of motion desired, the gears and the profiles of the gear teeth can be of almost any form.