This paper introduces new process developments in low-pressure carburizing and carbonitriding using either high-pressure gas quenching or
interrupted gas quenching.
Heat treating and quenching are arguably the most critical operations in the manufacture of gears. This article examines causes of distortion in heat treating and quenching.
High demands for cost-effectiveness and improved product quality can be achieved via a new low pressure
carburizing process with high pressure gas quenching. Up to 50% of the heat treatment time can be saved. Furthermore, the distortion of the gear parts could be reduced because of gas quenching, and grinding costs could be saved. This article gives an overview of the principles of the process technology and the required furnace technology. Also, some examples of practical applications
are presented.
Gears are extremely complex shapes. Coordinate measuring machines, or CMMs, are designed to measure complex shapes. It seems to follow that CMMs world, therefore, be the ideal tool for measuring gears. But the answer is not so simple.
Most steel gear applications require appreciable loads to be applied that will result in high bending and compressive stresses. For the material (steel) to meet these performance criteria, the gear must be heat treated. Associated with this thermal processing is distortion. To control the distortion and achieve repeatable dimensional tolerances, the gear will be constrained during the quenching cycle of the heat treatment process. This type of fixture quenching is the function of gear quench pressing equipment.