The turbines are still spinning.
They’re spinning on large wind farms
in the Great Plains, offshore in the
Atlantic and even underwater where
strong tidal currents offer new energy
solutions. These turbines spin regularly
while politicians and policy makers—
tied up in discussions on tax incentives, economic recovery and a lot of finger pointing—sit idle. Much like the auto and aerospace industries of years past, renewable energy is coping with its own set of growing pains. Analysts still feel confident that clean energy will play a significant role in the future of manufacturing—it’s just not going to play the role envisioned four to five
years ago.
The first edition of the international calculation method for micropitting—ISO TR 15144–1:2010—was just published
last December. It is the first and only official, international calculation method established for dealing with
micropitting. Years ago, AGMA published a method for the calculation of oil film thickness containing some comments
about micropitting, and the German FVA published a calculation method based on intensive research results. The FVA and the AGMA methods are close to the ISO TR, but the calculation of micropitting safety factors is new.
Faithful Addendum readers are accustomed to finding upbeat, whimsical and oddball stories about gears in this
space. What follows is not about gears, exactly. Rather, it is, as opposed to the usual bleak news about America losing its manufacturing mojo—a look at a positive, hopeful development in that regard.
Induction hardening is widely used in both the automotive and aerospace gear industries to minimize heat treat distortion and obtain favorable compressive residual stresses for improved fatigue performance. The heating process during induction hardening has a significant effect on the quality of the heat-treated parts. However, the quenching process often receives less attention even though it is equally important.
This paper seeks to compare the data generated from test rig shaft encoders and torque transducers when using steel-steel, steel-plastic and plastic-plastic gear combinations in order to understand the differences in performance of steel and plastic gears.
This paper presents an original method to compute the loaded mechanical behavior of polymer gears. Polymer
gears can be used without lubricant, have quieter mesh, are more resistant to corrosion, and are lighter in weight.
Therefore their application fields are continually increasing. Nevertheless, the mechanical behavior of polymer materials is very complex because it depends on time, history of displacement and temperature. In addition, for several polymers, humidity is another factor to be taken into account. The particular case of polyamide 6.6 is studied in this paper.
The objective, according to Dr.-
Ing. Hansjörg Geiser, head of development and design for gear machines at Liebherr, was to develop and design a combined turning and hobbing machine in which turning, drilling and hobbing work could be carried out in the same clamping arrangement as the hobbing of the gearings and the subsequent chamfering and deburring processes.
If you make hardened gears and have not seen any micropitting, then you haven’t looked closely enough. Micropitting is one of the modes of failure that has more recently become of concern to gear designers and manufacturers. Micropitting in itself is not necessarily a problem, but it can lead to noise and sometimes other more serious forms of failure. Predicting when this will occur is the challenge
facing designers.