A popular cable car customizing show recently featured a segment on using 3-D printing to produce a prototype part. There wasn’t anything original ...
Faithful Addendum readers are accustomed to finding upbeat, whimsical and oddball stories about gears in this
space. What follows is not about gears, exactly. Rather, it is, as opposed to the usual bleak news about America losing its manufacturing mojo—a look at a positive, hopeful development in that regard.
Profile corrections on gears are a commonly used method to reduce transmission error, contact shock, and scoring risk. There are different types of profile corrections. It is a known fact that the type of profile correction used will have a strong influence on the resulting transmission error. The degree of this influence may be determined by calculating tooth loading during mesh. The current method for this calculation is very complicated and time consuming; however,
a new approach has been developed that could reduce the calculation time.
The lifetime of worm gears is usually delimited by the bronze-cast worm wheels. The following presents some optimized cast bronzes, which lead to a doubling of wear resistance.
Question: When cutting worm gears with multiple lead stock hobs we find the surface is "ridged". What can be done to eliminate this appearance or is to unavoidable?
These lines, interesting enough, are from the notebooks of an artist whose images are part of the basic iconography of Western culture. Even people who have never set foot in a museum and wouldn't know a painting by Corregio from a sculpture by Calder, recognize the Mona Lisa. But Leonardo da Vinci was much more than an artist. He was also a man of science who worked in anatomy, botany, cartography, geology, mathematics, aeronautics, optics, mechanics, astronomy, hydraulics, sonics, civil engineering, weaponry and city planning. There was little in nature that did not interest Leonardo enough to at least make a sketch of it. Much of it became a matter of lifelong study. The breadth of his interests, knowledge, foresight, innovation and imagination is difficult to grasp.
Involute spur gears are very sensitive to gear misalignment. Misalignment will cause the shift of the bearing contact toward the edge of the gear tooth surfaces and transmission errors that increase gear noise. Many efforts have been made to improve the bearing contact of misaligned spur gears by crowning the pinion tooth surface. Wildhaber(1) had proposed various methods of crowning that can be achieved in the process of gear generation. Maag engineers have used crowning for making longitudinal corrections (Fig. 1a); modifying involute tooth profile uniformly across the face width (Fig. 1b); combining these two functions in Fig. 1c and performing topological modification (Fig. 1d) that can provide any deviation of the crowned tooth surface from a regular involute surface. (2)
The newer profile-shifted (long and short addendum) gears are often used as small size reduction gears for automobiles or motorcycles. The authors have investigated the damage to each cutting edge when small size mass-produced gears with shifted profiles are used at high speeds.