Gear designers today are continually challenged to provide more power in less space and improve gear performance. The following article looks at some of the most common ways to increase the power density or improve the performance of gear trains. The author also takes an in-depth look at the case of a steel worm mating with a plastic helical gear and explores ways to optimize this increasingly common configuration.
More and more gear shops are wrestling with the issue of whether or not solid modeling is right for their gear design work. The Q & A Page of The Gear Industry Home Page has had numerous questions asking how to model gears in solid modeling applications such as AutoCAD, Solidworks and Pr/Engineer. Given the problems people have been having, we are presenting the step-by-step process for modeling gears in Pr/Engineer, but first we thought it would be a good idea to explore the question of whether or not you should even try to design gears using Pro/Engineer or any other 3D solid modeling program.
This is the third article in a series exploring the new ISO 6336 gear rating standard and its methods of calculation. The opinions expressed herein are htose of the author as an individual. They do not represent the opinions of any organization of which he is a member.
One of the best ways to learn the ISO 6336 gear rating system is to recalculate the capacity of a few existing designs and to compare the ISO 6336 calculated capacity to your experience with those designs and to other rating methods. For these articles, I'll assume that you have a copy of ISO 6336, you have chosen a design for which you have manufacturing drawings and an existing gear capacity calculation according to AGMA 2001 or another method. I'll also assume that you have converted dimensions, loads, etc. into the SI system of measurement.
It should be obvious by now that gears are more than just mechanical components. We have brought you movies with gears and Shakespeare with gears, jewelry made out of gears and so on. Now we, the humble staff at Addendum, are proud to present gears in the world of music.
The American Gear Manufacturers Association (AGMA) is accredited by the American National Standards Institute (ANSI) to write all U.S. standards on gearing. However, in response to the growing interest in a global marketplace, AGMA became involved with the International Standards Organization (ISO) several years ago, first as an observer in the late 1970s and then as a participant, starting in the early 1980s. In 1993, AGMA became Secretariat (or administrator) for Technical Committee 60 of ISO, which administers ISO gear standards development.
The wind turbine industry has been plagued with gearbox failures, which cause repair costs, legal expenses, lost energy production and environmental pollution.
Gear shaving is a free-cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity. The process also improves tooth surface finish and eliminates by means of crowned tooth forms the danger of tooth end load concentrations in service.
I sat down to write this editorial about my father, Harold Goldstein, as he approached his 80th birthday in October. I had meant it to be a celebration of his nearly 65 years in the machine tool business. Unfortunately, on August 26, as I was working on it, my father passed away after a long battle with emphysema. This editorial has now become a memorial as well as a celebration.