On a highway, a compact pick-up truck struggles to tow a 30-foot boat up a steep grade. Inside the pick-up, the owner curses himself. He saved money leasing a smaller truck but sees now that he really needed a bigger, pricier vehicle, one suitable for this job.
Curved face width (CFW) spur gears are not popular in the gear industry. But these non-metallic gears have advantages over standard spur gears: higher contact ratio, higher tooth stiffness, and lower contact and bending stresses.
There are great advantages in dry hobbing, not only for friendliness
toward the environment, but also for increasing productivity and for decreasing manufacturing cost. Dry hobbing, however, often causes failures in hob cutting edges or problems with the surface quality of gear tooth flanks. These difficulties are not present when hobbing with cutting oil. Pinching and crushing of generated chips between the hob cutting edge and the work gear tooth flank is considered a major cause of those problems.
The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears.
Nobody's sure what went on in Bolsa Chica, CA, when gear-shaped stones were used there 8,700 years ago, but a popular belief is that at least some activity revolved around manufacturing.
Gear manufacturers typically use plastic, steel or other metals to make their gears, but Andrew Shotts made his first gears out of sugar and chocolate.
Increased productivity in roughing operations for gear cutting depends mainly on lower production costs in the hobbing process. In addition, certain gears can be manufactured by shaping, which also needs to be taken into account in the search for a more cost-effective form of production.