Companies around the world are learning to embrace the environment, and the gear industry is no exception. This special section takes a look at how some gear manufacturers are doing
their part to conserve resources, preserve and protect the environment, and give back to the land. What we’ve found is that adopting environmental
measures is far more than just good
corporate citizenship. For many gear industry companies, good environmental practices also turn out to be good for the bottom line.
Recent breakthroughs in profile grinding software are helping Anderson Precision Gears and others meet wind power’s insatiable appetite for faster
production of large, high-quality gears.
The seemingly simple process of placing a uniform chamfer on the face ends of spur and helical gears, at least for the aerospace industry, has never been a satisfactory or cost effective process.
This paper reviews the necessity for detailed specification, design and manufacture to achieve required performance in service. The precise definition of duty rating and a thorough understanding of the environmental conditions, whether it is in a marine or industrial application, is required to predict reliable performance of a gearbox through its service life. A case study relating to complex marine gears and other general practice is presented to review the techniques used by Allen Gears to design and develop a gearbox that integrates with the requirements of the whole machinery installation. Allen Gears has considerable experience in the design of a variety of industrial and marine gears(Ref. 1,2).
Carbon steels have primarily been used to manufacture aerospace gears due to the steels' mechanical characteristics. An alloyed low carbon steel is easily case-hardened to obtain a hard wear surface while maintaining the ductile core characteristics. The microstructure achieved will accept the heavy loading, shocks, and elevated temperatures that gears typically experience in applications. The carbon steel machinability allows for general machining practices to be employed when producing aerospace gears versus the more advanced metal removal processes required by stainless and nickel-based alloys.
If you think of Gear Expo as only a machine tool show, you're not seeing all of its potential. You may be tempted to skip it this year, especially if you're struggling to fill your current capacity. I've heard too many stories of canceled orders, falling profits and slashed budgets to believe that great numbers of you will be attending Gear Expo with buying new machines as your No. 1 priority.
Increased productivity in roughing operations for gear cutting depends mainly on lower production costs in the hobbing process. In addition, certain gears can be manufactured by shaping, which also needs to be taken into account in the search for a more cost-effective form of production.
An analysis of possibilities for the selection of tool geometry parameters was made in order to reduce tooth profile errors during the grinding of gears by different methods. The selection of parameters was based on the analysis of he grid diagram of a gear and a rack. Some formulas and graphs are presented for the selection of the pressure angle, module and addendum of the rack-tool. The results from the grinding experimental gears confirm the theoretical analysis.