By increasing the number of gears and the transmission-ratio spread, the engine will run with better fuel
efficiency and without loss of driving
dynamics. Transmission efficiency
itself can be improved by: using fuelefficient transmission oil; optimizing the lubrication systems and pumps; improving shifting strategies and optimizing gearings; and optimizing bearings and seals/gaskets.
Gearbox performance, reliability, total cost of ownership (energy cost), overall impact on the environment, and anticipation of additional future regulations are top-of-mind issues in the industry. Optimization of the bearing set can significantly improve gearbox performance.
The turbines are still spinning.
They’re spinning on large wind farms
in the Great Plains, offshore in the
Atlantic and even underwater where
strong tidal currents offer new energy
solutions. These turbines spin regularly
while politicians and policy makers—
tied up in discussions on tax incentives, economic recovery and a lot of finger pointing—sit idle. Much like the auto and aerospace industries of years past, renewable energy is coping with its own set of growing pains. Analysts still feel confident that clean energy will play a significant role in the future of manufacturing—it’s just not going to play the role envisioned four to five
years ago.
It’s a brave, new hardware-software world out there. Players in the worldwide gear industry who don’t have plenty of both run the risk of becoming irrelevant—sooner than later.
In the August 2008 issue of Gear Technology, we ran a story (“Gearbox
Speed Reducer Helps Fan Technology for ‘Greener” Jet Fuel Efficiency’) on the
then ongoing, extremely challenging and protracted development of Pratt
& Whitney’s geared turbofan (GTF) jet engine.
Gear flank breakage can be observed on edge zone-hardened gears. It occurs, for example, on bevel gears for water turbines, on spur gears for wind energy converters and on single- and double-helical gears for other industrial
applications.