Spur cylindrical gears are usually cut using a hob and therefore present an essentially straight face to which crowning can be added to prevent edge contact. Rather than using a rack or hob, it is possible to cut cylindrical gears with a face mill cutter. In the following presentation, these gears are termed "spurved," i.e. — a contraction of "spur" and "curved."
The optimum carburized and hardened case depth for each gear failure mode is different and must be defined at different locations on the gear tooth. Current gear rating standards do not fully explain the different failure modes and do not clearly define the different locations that must be considered.
During the revision of ISO 1328-1:2013 Cylindrical gears — ISO system of flank tolerance classification, ISO Technical Committee TC 60 WG2 delegates discussed proposals that the standard should be modified to ensure that it is compatible with the ISO Geometrical Product
Specification (GPS) series of standards (Refs. 1-3). This seems sensible because the gears are geometrical components, but after reviewing the implications, it was rejected because ISO TC 60 WG2 did not think the gear manufacturing industry was ready for such a radical change in measurement strategy. The feasibility of the implementation of gears into the GPS matrix of standards has been carried out and the results conclude that this is practical, provided some
key issues related to measurement uncertainty and establishing appropriate KPIs are addressed.
The wear behavior of polymer gears made of five different materials has been investigated using an existing polymer gear test rig. Step loading tests at a constant speed of 1,000 rpm were performed. Significant differences in failure modes and performance have been observed for the five polymer gear materials for gear engagements of gears, with the same material as each other.
This article provides a guideline for the selection of a suitable standard in connection with the kind of spline to be designed and manufactured. Some basic formulae have been explained, together with a strategy on how to find standard
tooling by calculating an appropriate profile shift factor for the spline to be designed.
This paper shows a method to calculate the occurring tooth root stress for involute, external gears with any form of fillets very precisely within a few seconds.
This study emphasizes the importance of a closed-loop approach togear design and manufacturing to assure designed root fillet shapes are attained in production, and gears meet the design intent.
The authors use data analysis to determine which tolerances have the greatest effect on transmission error, enabling them to make adjustments and reduce production costs.