Hobbing is one of the most fundamental
processes in gear manufacturing. Its
productivity and versatility make hobbing
the gear manufacturing method of choice for a majority of spur and helical
gears.
This article also appears as Chapter 1 in the Gleason Corporation publication "Advanced Bevel Gear Technology."
Gearing Principles in Cylindrical and Straight Bevel Gears
The purpose of gears is to transmit motion and torque from one shaft to another. That transmission normally has to occur with a constant ratio, the lowest possible disturbances and the highest possible efficiency. Tooth profile, length and shape are derived from those requirements.
In our last issue, we covered the basic principles of gear shaving and preparation of parts for shaving. In this issue, we will cover shaving methods, design principles and cutter mounting techniques.
Gear shaving is a free cutting gear finishing operation which removes small amounts of metal from the working surfaces of gear teeth. Its purpose is to correct errors in index, helix angle, tooth profile and eccentricity.
NC and CNC machines are at the heart of manufacturing today. They are the state-of-the-art equipment everybody has (or is soon going to get) that promise to lower costs, increase production and turn manufacturers into competitive powerhouses. Like many other high tech devices (such as microwaves and VCRs), lots of people have and use them - even successfully - without really knowing much about how they operate. But upgrading to CNC costs a lot of money, so it's crucial to separate the hype from the reality.
Gear hobbing is a generating process. The term generating refers to the fact that the gear tooth form cut is not the conjugate form of the cutting tool, the hob. During hobbing both the hob and the workpiece rotate in a continuous rotational relationship. During this rotation, the hob is typically fed axially with all the teeth being gradually formed as the tool traverses the work face (see Fig. 1a).
The first part of this article included abrasive wear with two bodies, streaks and scoring, polishing, and hot and cold scuffing. This part will deal with three-body wear, scratches or grooves, and interference wear. Normal, moderate, and excessive wear will be defined, and a descriptive chart will be presented.
Precision gears play a vital role in today's economy. Through their application, automobile transmissions are more compact and efficient, ships sail faster, and diesel locomotives haul more freight. Today great emphasis is being placed upon the reduction of noise in all gear applications and, to be quiet, gears must be accurate.