Circular arc helical gears have been proposed by Wildhaber and Novikov (Wildhaber-Novikov gears). These types of gears became very popular in the sixties, and many authors in Russia, Germany, Japan and the People's Republic of China made valuable contributions to this area. The history of their researches can be the subject of a special investigation, and the authors understand that their references cover only a very small part of the bibliography on this topic.
Crossed helical gear sets are used to transmit power and motion between non-intersecting and non-parallel axes. Both of the gears that mesh with each other are involute helical gears, and a point contact is made between them. They can stand a small change in the center distance and the shaft angle without any impairment in the accuracy of transmitting motion.
In the gearing industry, gears are lubricated and cooled by various methods. At low to moderate speeds and loads, gears may be partly submerged in the lubricant which provides lubrication and cooling by splash lubrication. With splash lubrication, power loss increases considerably with speed. This is partially because of churning losses. It is shown that gear scoring and surface pitting can occur when the gear teeth are not adequately lubricated and cooled.
Transmission of power between nonparallel shafts is inherently more difficult than transmission between parallel shafts, but is justified when it saves space and results in more compact, more balanced designs. Where axial space is limited compared to radial space, angular drives are preferred despite their higher initial cost. For this reason, angular gear motors and worm gear drives are used extensively in preference to parallel shaft drives, particularly where couplings, brakes, and adjustable mountings add to the axial space problem of parallel shaft speed reducers.
Helical gears can drive either nonparallel or parallel shafts. When these gears are used with nonparallel shafts, the contact is a point, and the design and manufacturing requirements are less critical than for gears driving parallel
shafts.
The contact lines of a pair of helical gears move diagonally on the engaged tooth faces and their lengths consequently vary with the rotation of the gears.
The use of plastic gearing is increasing steadily in new products.
This is due in part to the availability of recent design data. Fatigue
stress of plastic gears as a function of diametral pitch, pressure angle,
pitch line velocity, lubrication and life cycles are described based
on test information. Design procedures for plastic gears are presented.
High speed gearing, operating with low viscosity lubricants, is prone to a failure mode called scoring. In contrast
to the classic failure modes, pitting and breakage, which generally take time to develop, scoring occurs early in the
operation of a gear set and can be the limiting factor in the gear's power capability.
The fundamental purpose of gear
grinding is to consistently and economically produce "hard" or "soft" gear tooth elements within the accuracy required by the gear functions. These gear elements include tooth profile, tooth spacing, lead or parallelism, axial profile, pitch line runout, surface finish, root fillet profile,
and other gear geometry which contribute
to the performance of a gear train.
Material losses and long production times are two areas of conventional spur and helical gear manufacturing in which improvements can be made. Metalforming processes have been considered for manufacturing spur and helical gears, but these are costly due to the development times necessary for each new part design. Through a project funded by the U.S. Army Tank - Automotive Command, Battelle's Columbus
Division has developed a technique for designing spur and helical gear forging and extrusion dies using computer aided
techniques.